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1 One-Sided and Two-Sided Tests

1.1 Recap: Basics of hypothesis testing

Last time, we introduced hypothesis testing, where we have a model P = {Pθ : θ ∈ Θ} and
want to distinguish between H0 : θ ∈ Θ and H1 : θ ∈ Θ (usually, Θ1 = Θ \Θ0). The tests
were described by a critical function φ : X → [0, 1] given by

φ(x) =


1 reject

π flip a (biased) coin

0 fail to accept.

We defined the rejection region R = {x : φ(x) = 1} (ignoring randomization), the power
function βφ(θ) = Eθ[φ(X)] = Pθ(Reject H0), and the significance level supθ∈Θ0

βφ(θ).
Our goal is to obtain the maximum power for θ ∈ Θ1, relative to the constraint that

the significance level is at α. There are two types of errors in this setting:

Definition 1.1. A Type I error is rejecting the null hypothesis when H0 is true. A
Type II error is failing to reject the null hypothesis when H1 is true.

We introduced the Likelihood Ratio Test (LRT) in the case of a simple null H0 :
θ = θ0 vs a simple alternative hypothesis H1 : θ = θ1. This test is given by

φ∗(x) =


1 p1

p0
(x) > c

γ p1
p0

(x) = c

0 p1
p0

(x) < c,

where we choose c, γ such that E0[φ(X)] = α. There is a bit of ambiguity because any test
of the form (for c ≥ 0)

φ∗(x) =


1 p1

p0
(x) > c

anything p1
p0

(x) = c

0 p1
p0

(x) < c
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maximizes E1[φ(X)]− cE0[φ(X)] =
∫

(p1 − cp0) dµ, as long as we keep the constraint that
the significance level is α.

Last time, we had a proposition that said that any test of this form maximizes E1[φ(X)]
subject to Eθ[φ(X)] = α =: E1[φ∗]. A corollary to this

Example 1.1. If X ∼ pη(x) = eηT (x)−A(η)h(x) is an exponential family with H0 : η = η0

and H0 : η = η1 > η0, then the LRT gave

LR(X) = e(η1−η0)T (X)−(A(η1)−A(η0)),

which was monotone in T (X). So we saw that the LRT was dependent only on T (X) and
not on the particular value of η1. So the same exact test is the best for all alternative
hypotheses of this form.

1.2 Uniformly most powerful (UMP) tests

Definition 1.2. If φ∗(X) has significance level α, and for any other level-α test φ,

Eθ[φ∗(X)] ≥ Eθ[φ(X)] ∀θ ∈ Θ1,

we say that φ∗ is uniformly most powerful (UMP).

Definition 1.3. A model P is identifiable if θ1 6= θ2 =⇒ Pθ1 6= Pθ2 .

This is just saying that the different values of θ actually mean different things in our
model.

Definition 1.4. Assume P = {Pθ : θ ∈ Θ ⊆ R} is identifiable and has densities pθ for Pθ
with respect to µ. We say P has monotone likelihood ratios (MLR) in T (x) if

pθ2
pθ1

(x)

is a nondecreasing function of T (x) for all θ2 > θ1.

Remark 1.1. This is different from T (X) being stochastically increasing in θ, which
says that Pθ(T (X) > c) is increasing in θ. This condition is enough to construct a valid
one-sided test that rejects when T is large, but it will not necessarily be uniformly most
powerful.

Theorem 1.1. Assume P has MLR in T (x), and test H0 : θ ≤ θ0 vs H1 : θ > θ0. Let let
φ∗(x) reject for large T (x), where c, γ are chosen so Eθ0 [φ∗(X)] = α.

(a) φ∗ is a UMP level-α test.

(b) βφ∗(θ) = Eθ[φ∗(X)] is non-decreasing in θ and strictly increasing if Eθ[φ∗(X)] ∈
(0, 1).

(c) If θ1 < θ0, φ∗ minimizes Eθ1 [φ(X)] among all tests φ with power = α at θ.
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Proof.

(b): if θ1 < θ2, then
pθ2
pθ1

(x) is nondecreasing i nT (X). So φ∗ is a LRT for H0 : θ = θ1 vs

H1 : θ = θ2 (at level α̃ := Eθ1 [φ∗(X)]). Then the corollary from last time says that
Eθ2 [φ∗(X)] > α̃ = Eθ1 [φ∗(X)].

(a): If θ > θ0, then φ∗ is the LRT for H0 : θ = θ0 vs H1 : θ = θ1.

(c): If θ1 < θ0, assume Eθ0 [φ̃(X)] = α. Then both 1 − φ∗ and 1 − φ̃ are level 1 − α
tests of H0 : θ = θ0 vs H1 : θ = θ1. But 1 − φ∗ is the LRT for this test. Indeed,
pθ1
pθ0

(x) = [
pθ0
pθ1

(x)]−1 is decreasing in T , and 1 − φ∗ rejects for small T (X). So φ∗

maximizes Eθ1 [1− φ] scuh that Eθ0 [1− φ] ≤ 1− α.

1.3 Two-sided tests

What about two-sided alternative hypotheses? Suppose P = {Pθ : θ ∈ Θ ⊆ R} with
θ0 ∈ Θ0, where want to test H0 : θ = θ0 vs H1 : θ 6= θ0 (this can be generalized to
H0 : θ ∈ [θ1, θ2]).

Definition 1.5. T (X) is stochastically increasing in θ if Pθ(T (X) ≤ t) is nonincreasing
in θ for all t.

Assume T (X) is a stochastically increasing summary test statistic.

Example 1.2. For example, this applies to Xi
iid∼ p0(x − θ) where T (X) is the sample

mean or median.

Example 1.3. This also applies to Xi
iid∼ 1

θp1(x/θ) where T (X) =
∑

iX
2
i .
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Definition 1.6. The two-tailed test rejects when T (X) is extreme in any direction:

φ(x) =


1 T (x) < c1 or T (x) > c2

0 T (X) ∈ (c1, c2)

γi T (x) = ci, i = 1, 2.

In this setting, we will not usually be able to get a UMP test. We usually have a
tradeoff between allocating our type I error to values where θ is large or values where θ is
small. Let

α = Pθ0(T (X) < c1) + γ1P(T (X) = c1)

α2 = Pθ0(T (X) > c2) + γ2P(T (X) = c2).

We need α1 + α2 = α, and we have to balance these considerations. Here are some ideas:
One natural way to do this is to do an equal-tailed test, i.e. set α1 = α2 = α/2.

Definition 1.7. φ(x) is unbiased if

inf
θ∈Θ1

Eθ[φ(X)] ≥ α.

The second idea is to choose an unbiased test.

Theorem 1.2. Assume Xi
iid∼ eθT (x)−A(θ)h(x), so the sufficient statistic

∑n
i=1 T (Xi). Test

H0 : θ ∈ [θ1, θ2] (with possibly θ1 = θ2) vs the alternative H1 : θ /∈ [θ1, θ2]. Let φ(x) be the
two-tailed test based on

∑n
i=1 T (Xi).

(a) The unbiased two-tailed test for
∑n

i=1 T (Xi) with significance level = α is UMP
among all unbiased tests (UMPU).
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(b) If θ1 < θ2, the UMPU test solves Eθ1 [φ(X)] = Eθ2 [φ(X)] = α.

(c) If θ1 = θ2 = θ0, the UMPU test solves Eθ0 [φ(X)] = α and

Eθ0

[
n∑
i=1

T (Xi)(φ(X)− α)

]
=

d

dθ
Eθ[φ(X)]

∣∣∣∣
θ=θ0

= 0.

Proof. Proof is in Keener.

1.4 p-values

Here is an informal definition (if φ(x) rejects for large T (x)): The p-value is

p(x) = “PH0(T (X) ≥ T (x)).”

= sup
θ∈Θ0

Pθ(T (X) ≥ T (x)).

Example 1.4. Let X ∼ N(θ, 1), and test H0 : θ = 0 vs H1 : θ 6= 0. The two-sided test
rejects for large |X|, and the two-sided p-value is

p(x) = Pθ(|x| > |x|) = 2(1− Φ(|x|)).

We could instead test H0 : |θ| ≤ δ against H1 : |θ| > δ. It turns out that we will get

p(x) = Pδ(|X| > |x|)
= 1− Φ(|x| − δ) + Φ(−|x| − δ).

Not every test will look like this, so we want a more formal definition.

Definition 1.8. Let φα(x) be a family of tests with supθ∈Θ0
Eθ[φα(x)] ≤ α and φα(x)

monotone in α. Then the p-value is

p(x) = inf{α : φα(x) = 1}
= inf{α : x ∈ Rα}.
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This is the α for which the corresponding test just barely rejects.
For θ ∈ Θ0,

Pθ(p(X) ≤ α) ≤ inf
α̃>α

Pθ(φα̃(X) = 1) ≤ α,

so the p-value is stochastically larger than U [0, 1] under H0.

Remark 1.2. The p-value is dependent on not just the data but also the null hypothesis
and the hypothesis test we use! This is something many people misunderstand in practice.
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