Statistics 210A Lecture 15 Notes

Daniel Raban

October 14, 2021

1 One-Sided and Two-Sided Tests

1.1 Recap: Basics of hypothesis testing

Last time, we introduced hypothesis testing, where we have a model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ and want to distinguish between $H_0 : \theta \in \Theta$ and $H_1 : \theta \in \Theta$ (usually, $\Theta_1 = \Theta \setminus \Theta_0$). The tests were described by a **critical function** $\phi : \mathcal{X} \to [0, 1]$ given by

$$\phi(x) = \begin{cases} 1 & \text{reject} \\ \pi & \text{flip a (biased) coin} \\ 0 & \text{fail to accept.} \end{cases}$$

We defined the **rejection region** $R = \{x : \phi(x) = 1\}$ (ignoring randomization), the **power** function $\beta_{\phi}(\theta) = \mathbb{E}_{\theta}[\phi(X)] = \mathbb{P}_{\theta}(\text{Reject } H_0)$, and the **significance level** $\sup_{\theta \in \Theta_0} \beta_{\phi}(\theta)$.

Our goal is to obtain the maximum power for $\theta \in \Theta_1$, relative to the constraint that the significance level is at α . There are two types of errors in this setting:

Definition 1.1. A **Type I error** is rejecting the null hypothesis when H_0 is true. A **Type II error** is failing to reject the null hypothesis when H_1 is true.

We introduced the **Likelihood Ratio Test (LRT)** in the case of a simple null H_0 : $\theta = \theta_0$ vs a simple alternative hypothesis $H_1: \theta = \theta_1$. This test is given by

$$\phi^*(x) = \begin{cases} 1 & \frac{p_1}{p_0}(x) > c \\ \gamma & \frac{p_1}{p_0}(x) = c \\ 0 & \frac{p_1}{p_0}(x) < c, \end{cases}$$

where we choose c, γ such that $\mathbb{E}_0[\phi(X)] = \alpha$. There is a bit of ambiguity because any test of the form (for $c \ge 0$)

$$\phi^*(x) = \begin{cases} 1 & \frac{p_1}{p_0}(x) > c \\ \text{anything} & \frac{p_1}{p_0}(x) = c \\ 0 & \frac{p_1}{p_0}(x) < c \end{cases}$$

maximizes $\mathbb{E}_1[\phi(X)] - c \mathbb{E}_0[\phi(X)] = \int (p_1 - cp_0) d\mu$, as long as we keep the constraint that the significance level is α .

Last time, we had a proposition that said that any test of this form maximizes $\mathbb{E}_1[\phi(X)]$ subject to $\mathbb{E}_{\theta}[\phi(X)] = \alpha =: \mathbb{E}_1[\phi^*]$. A corollary to this

Example 1.1. If $X \sim p_{\eta}(x) = e^{\eta T(x) - A(\eta)}h(x)$ is an exponential family with $H_0: \eta = \eta_0$ and $H_0: \eta = \eta_1 > \eta_0$, then the LRT gave

$$LR(X) = e^{(\eta_1 - \eta_0)T(X) - (A(\eta_1) - A(\eta_0))}$$

which was monotone in T(X). So we saw that the LRT was dependent only on T(X) and not on the particular value of η_1 . So the same exact test is the best for all alternative hypotheses of this form.

1.2 Uniformly most powerful (UMP) tests

Definition 1.2. If $\phi^*(X)$ has significance level α , and for any other level- α test ϕ ,

$$\mathbb{E}_{\theta}[\phi^*(X)] \ge \mathbb{E}_{\theta}[\phi(X)] \qquad \forall \theta \in \Theta_1,$$

we say that ϕ^* is uniformly most powerful (UMP).

Definition 1.3. A model \mathcal{P} is identifiable if $\theta_1 \neq \theta_2 \implies P_{\theta_1} \neq P_{\theta_2}$.

This is just saying that the different values of θ actually mean different things in our model.

Definition 1.4. Assume $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}\}$ is identifiable and has densities p_{θ} for P_{θ} with respect to μ . We say \mathcal{P} has **monotone likelihood ratios (MLR)** in T(x) if $\frac{p_{\theta_2}}{p_{\theta_1}}(x)$ is a nondecreasing function of T(x) for all $\theta_2 > \theta_1$.

Remark 1.1. This is different from T(X) being stochastically increasing in θ , which says that $\mathbb{P}_{\theta}(T(X) > c)$ is increasing in θ . This condition is enough to construct a valid one-sided test that rejects when T is large, but it will not necessarily be uniformly most powerful.

Theorem 1.1. Assume \mathcal{P} has MLR in T(x), and test $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. Let let $\phi^*(x)$ reject for large T(x), where c, γ are chosen so $\mathbb{E}_{\theta_0}[\phi^*(X)] = \alpha$.

- (a) ϕ^* is a UMP level- α test.
- (b) $\beta_{\phi^*}(\theta) = \mathbb{E}_{\theta}[\phi^*(X)]$ is non-decreasing in θ and strictly increasing if $\mathbb{E}_{\theta}[\phi^*(X)] \in (0,1)$.
- (c) If $\theta_1 < \theta_0$, ϕ^* minimizes $\mathbb{E}_{\theta_1}[\phi(X)]$ among all tests ϕ with power = α at θ .

Proof.

- (b): if $\theta_1 < \theta_2$, then $\frac{p_{\theta_2}}{p_{\theta_1}}(x)$ is nondecreasing i nT(X). So ϕ^* is a LRT for $H_0: \theta = \theta_1$ vs $H_1: \theta = \theta_2$ (at level $\tilde{\alpha} := \mathbb{E}_{\theta_1}[\phi^*(X)]$). Then the corollary from last time says that $\mathbb{E}_{\theta_2}[\phi^*(X)] > \tilde{\alpha} = \mathbb{E}_{\theta_1}[\phi^*(X)]$.
- (a): If $\theta > \theta_0$, then ϕ^* is the LRT for $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$.
- (c): If $\theta_1 < \theta_0$, assume $\mathbb{E}_{\theta_0}[\tilde{\phi}(X)] = \alpha$. Then both $1 \phi^*$ and $1 \tilde{\phi}$ are level 1α tests of $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. But $1 \phi^*$ is the LRT for this test. Indeed, $\frac{p_{\theta_1}}{p_{\theta_0}}(x) = [\frac{p_{\theta_0}}{p_{\theta_1}}(x)]^{-1}$ is decreasing in T, and $1 \phi^*$ rejects for small T(X). So ϕ^* maximizes $\mathbb{E}_{\theta_1}[1 \phi]$ scuh that $\mathbb{E}_{\theta_0}[1 \phi] \leq 1 \alpha$.

1.3 Two-sided tests

What about two-sided alternative hypotheses? Suppose $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}\}$ with $\theta_0 \in \Theta^0$, where want to test $H_0 : \theta = \theta_0$ vs $H_1 : \theta \neq \theta_0$ (this can be generalized to $H_0 : \theta \in [\theta_1, \theta_2]$).

Definition 1.5. T(X) is stochastically increasing in θ if $\mathbb{P}_{\theta}(T(X) \leq t)$ is nonincreasing in θ for all t.

Assume T(X) is a stochastically increasing summary test statistic.

Example 1.2. For example, this applies to $X_i \stackrel{\text{iid}}{\sim} p_0(x-\theta)$ where T(X) is the sample mean or median.

Example 1.3. This also applies to $X_i \stackrel{\text{iid}}{\sim} \frac{1}{\theta} p_1(x/\theta)$ where $T(X) = \sum_i X_i^2$.

Definition 1.6. The two-tailed test rejects when T(X) is extreme in any direction:

$$\phi(x) = \begin{cases} 1 & T(x) < c_1 \text{ or } T(x) > c_2 \\ 0 & T(X) \in (c_1, c_2) \\ \gamma_i & T(x) = c_i, i = 1, 2. \end{cases}$$

In this setting, we will not usually be able to get a UMP test. We usually have a tradeoff between allocating our type I error to values where θ is large or values where θ is small. Let

$$\alpha = \mathbb{P}_{\theta_0}(T(X) < c_1) + \gamma_1 \mathbb{P}(T(X) = c_1)$$

$$\alpha_2 = \mathbb{P}_{\theta_0}(T(X) > c_2) + \gamma_2 \mathbb{P}(T(X) = c_2).$$

We need $\alpha_1 + \alpha_2 = \alpha$, and we have to balance these considerations. Here are some ideas:

One natural way to do this is to do an equal-tailed test, i.e. set $\alpha_1 = \alpha_2 = \alpha/2$.

Definition 1.7. $\phi(x)$ is unbiased if

The second idea is to choose an unbiased test.

Theorem 1.2. Assume $X_i \stackrel{\text{iid}}{\sim} e^{\theta T(x) - A(\theta)} h(x)$, so the sufficient statistic $\sum_{i=1}^n T(X_i)$. Test $H_0: \theta \in [\theta_1, \theta_2]$ (with possibly $\theta_1 = \theta_2$) vs the alternative $H_1: \theta \notin [\theta_1, \theta_2]$. Let $\phi(x)$ be the two-tailed test based on $\sum_{i=1}^n T(X_i)$.

(a) The unbiased two-tailed test for $\sum_{i=1}^{n} T(X_i)$ with significance level = α is UMP among all unbiased tests (UMPU).

(b) If $\theta_1 < \theta_2$, the UMPU test solves $\mathbb{E}_{\theta_1}[\phi(X)] = \mathbb{E}_{\theta_2}[\phi(X)] = \alpha$.

(c) If $\theta_1 = \theta_2 = \theta_0$, the UMPU test solves $\mathbb{E}_{\theta_0}[\phi(X)] = \alpha$ and

$$\mathbb{E}_{\theta_0}\left[\sum_{i=1}^n T(X_i)(\phi(X) - \alpha)\right] = \frac{d}{d\theta} \mathbb{E}_{\theta}[\phi(X)]\Big|_{\theta = \theta_0} = 0.$$

Proof. Proof is in Keener.

1.4 *p*-values

Here is an informal definition (if $\phi(x)$ rejects for large T(x)): The *p*-value is

$$p(x) = "\mathbb{P}_{H_0}(T(X) \ge T(x))."$$
$$= \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(T(X) \ge T(x)).$$

Example 1.4. Let $X \sim N(\theta, 1)$, and test $H_0: \theta = 0$ vs $H_1: \theta \neq 0$. The two-sided test rejects for large |X|, and the two-sided *p*-value is

$$p(x) = \mathbb{P}_{\theta}(|x| > |x|) = 2(1 - \Phi(|x|)).$$

We could instead test $H_0: |\theta| \leq \delta$ against $H_1: |\theta| > \delta$. It turns out that we will get

$$p(x) = \mathbb{P}_{\delta}(|X| > |x|) = 1 - \Phi(|x| - \delta) + \Phi(-|x| - \delta).$$

Not every test will look like this, so we want a more formal definition.

Definition 1.8. Let $\phi_{\alpha}(x)$ be a family of tests with $\sup_{\theta \in \Theta_0} \mathbb{E}_{\theta}[\phi_{\alpha}(x)] \leq \alpha$ and $\phi_{\alpha}(x)$ monotone in α . Then the *p*-value is

$$p(x) = \inf \{ \alpha : \phi_{\alpha}(x) = 1 \}$$
$$= \inf \{ \alpha : x \in R_{\alpha} \}.$$

н		
н		

This is the α for which the corresponding test just barely rejects. For $\theta \in \Theta_0$,

$$\mathbb{P}_{\theta}(p(X) \leq \alpha) \leq \inf_{\widetilde{\alpha} > \alpha} \mathbb{P}_{\theta}(\phi_{\widetilde{\alpha}}(X) = 1) \leq \alpha,$$

so the *p*-value is stochastically larger than U[0, 1] under H_0 .

Remark 1.2. The *p*-value is dependent on not just the data but also the null hypothesis and the hypothesis test we use! This is something many people misunderstand in practice.